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Abstract—Deep learning frameworks such as Mamba have 

significantly improved inference speed and computational 

efficiency. However, deploying them on resource-constrained 

edge devices on the Internet of Medical Things (IoMT) poses 

challenges due to the demands for real-time processing, secure 

data handling, and ultra-low power consumption. To address 

these constraints, this paper introduces LiMO, a lightweight 

MambaOut architecture that runs entirely on an 

microcontroller unit (MCU) for real-time electrocardiogram 

(ECG) diagnosis. By integrating the proposed fully configurable 

quantization, scale-linear layer fusion, and a hardware-software 

co-design approach, LiMO substantially reduces computational 

loading while maintaining medical-grade accuracy. Notably, the 

entire model consists of just 1.8k parameters. When deployed on 

the nRF52840 MCU, LiMO occupies only 54.4 KB of Flash and 

10.25 KB of RAM, achieves 98.75% accuracy on the MIT-BIH 

dataset, and consumes as little as 8.08 mJ per heartbeat 

classification at 3.3 V. These results demonstrate that LiMO 

successfully bridges the gap between state-of-the-art deep 

learning methodologies and the stringent requirements of real-

time ECG diagnosis in MCU-based IoMT environments, 

offering a practical and energy-efficient solution for next-

generation medical monitoring. 

Keywords—ECG classification, Software-hardware Co-design, 

Discrete Wavelet Transform, Poolformer 

I. INTRODUCTION 

 In recent years, the advanced deep learning frameworks 
[1], like the newly proposed Mamba [2], has significantly 
advanced artificial intelligence, enhancing inference speed 
and computational efficiency, and achieving superior 
performance across diverse fields such as natural language 
processing and time-series analysis [3-5]. However, 
deploying such architectures on the Internet of Medical 
Things (IoMT) domain presents significant challenges. The 
conventional Mamba framework requires substantial 
parameters and computational power, making it unsuitable for 
resource-constrained edge devices typically used in healthcare 
environments. These devices require real-time data processing, 
patient privacy, data security, and ultra-low power 
consumption, particularly for tasks like detecting and 
diagnosing cardiovascular diseases (CVDs) [6-7]. Therefore, 

the significant advantages of the Mamba architecture make its 
adaptation crucial for meeting the stringent demands of 
medical edge computing, highlighting the need for specialized, 
efficient solutions tailored for healthcare applications. 

In recent years, many studies have focused on deploying 
advanced AI models on resource-constrained edge devices, 
particularly in the healthcare domain, to enable real-time and 
secure IoMT [8-10]. Significant progress has been made in 
deploying Mamba algorithms on sophisticated yet powerful 
standalone devices; however, the high resource consumption 
involved has rendered them impractical for edge devices in 
medical applications, where computational and energy 
resources are limited [8]. Additionally, existing approaches 
for ECG diagnosis on edge devices often face challenges in 
achieving a balance between model accuracy, computational 
performance, and parameter efficiency, leading to 
compromises that hinder effective real-world deployment [9]. 
Moreover, while quantization techniques have been employed 
to reduce model size and complexity, current methods fail to 
optimize the trade-off between precision and bit-width for 
each individual layer [10]. This limitation prevents achieving 
the optimal compromise between accuracy preservation and 
resource efficiency, which is critical for practical edge 
computing applications. Although MambaOut has 
demonstrated that the Mamba architecture can be effectively 
simplified for vision classification tasks [11], while the 
nonlinear operations involved still pose a significant challenge 
for practical biomedical hardware implementation. These 
challenges emphasize the need for an approach that integrates 
a more efficient adaptation of the Mamba framework on MCU, 
achieves balanced ECG diagnostic performance, and employs 
adaptive layer-wise configurable quantization strategies, thus 
making it viable for real-time healthcare monitoring in 
constrained environments. 

In this work, we present a lightweight MambaOut (LiMO) 
system that incorporates novel optimization techniques to 
enhance computational efficiency while preserving model 
accuracy. To achieve an optimal balance between precision 
and computational load, we introduce a layer-wise 
configurable quantization approach, applied to both weights 
and activations during forward computations. Following a 
hardware-software co-design methodology, we ensure 
seamless integration between algorithmic innovations and 
hardware constraints. The LiMO system, occupying only 
55,716 bytes of FLASH (about 54.4 KB) and 10,496 bytes of 
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RAM (about 10.25 KB), was successfully deployed on an 
nRF52840 MCU (Nordic Semiconductor ASA). Utilizing the 
MIT-BIH dataset for evaluation, the implementation achieved 
an impressive accuracy of 98.75%. The key contributions of 
this study are: (1) balancing model accuracy and efficiency by 
significantly reducing complexity while maintaining medical-
grade prediction accuracy; (2) overcoming MCU hardware 
limitations, including memory, computational capacity, and 
power consumption, to enable efficient deep learning 
deployment; and (3) demonstrating an end-to-end MCU 
implementation, bridging theoretical advancements with 
practical applications. 

The rest of the paper is organized as follows. Section II 
provides a comprehensive overview of the proposed LiMO 
system for edge electrocardiogram classification system. 
Section III presents the fully configurable quantization 
strategy to enhance computational efficiency and model 
compactness. Section IV presents the implementation results 
on MCU while Section V concludes the paper.  

II. LIMO ECG SYSTEM SOFTWARE CO-DESIGN 

A. LiMO System Overview 

The structure of the proposed LiMO system for the end-
to-end edge electrocardiogram classification system is 
depicted in Fig. 1. The single-channel ECG signal is acquired 
using suction cup electrodes and processed by the nRF52840 
MCU. Upon acquisition, the raw signal is first processed with 
a band-pass filter (BPF, 0.5-100 Hz), followed by a moving 
average filter and normalization to maintain the amplitude 
within a standard range, thus mitigating variability arising 
from inconsistent electrode contact. These preprocessing steps 
result in a smoother and more distinct ECG signal, facilitating 

the identification of key waveform components, including the 
PR interval, QRS complex, and T wave. Once the waveform 
is preprocessed, it is segmented into individual samples based 
on Q-peak detection. Subsequently, each segment undergoes 
discrete wavelet transform (DWT) for multiresolution 
analysis [12], generating a wavelet coefficient spectrogram for 
detailed feature extraction with 
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where, 𝑓[𝑛] represents the discrete signal at sample 𝑛, 𝑗 and 

𝑘 are the scale and translation of the transform, respectively, 

and 𝜑 is the wavelet function.  Finally, the LiMO system is 

executed on the MCU for real-time diagnosis, providing the 

predicted classification outcomes.  

B. Lightweight MambaOut Block 

The conventional block in MambaOut is shown in Fig. 2(a) 

which is formulated as  

𝑋′ = 𝑁𝑜𝑟𝑚(𝑋)                                (2) 

𝑌 =  (𝐶𝑜𝑛𝑣(𝑋′𝑊1) ⊙ 𝜎(𝑋′𝑊2))𝑊3 + 𝑋          (3) 

where 𝑁𝑜𝑟𝑚(·) represents normalization, 𝐶𝑜𝑛𝑣(·) refers to 

the module to conduct convolution, ⊙ is the elementwise 

multiplication and  𝜎 is the active function. 

To enhance computational and memory efficiency, the 
block has been redesigned as the Redesigned Lightweight 
MambaOut (RLM) Block in this work. Firstly, batch 
normalization, which introduces inference complexity, has 
been demonstrated to be replaceable in lightweight models 
[13]. Therefore, it has been replaced by channel scaling, 
demonstrated as 

𝑋′ =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑆𝑐𝑎𝑙𝑖𝑛𝑔(𝑋))                   (4) 

where the input tensor is 𝑋 of shape (𝐶, 𝐻, 𝑊), 𝑆𝑐𝑎𝑙𝑖𝑛𝑔(·) is 
the channel scaling operation with factor of shape (𝐶, 1,1) 
and 𝐿𝑖𝑛𝑒𝑎𝑟(·) is the linear multiplication with bias.  

 
Fig. 1. The architecture of the proposed LiMO model. AAMI is the ECG 

classification standards developed by the Advancement of Medical 

Instrumentation. 

 
(a)                                                   (b) 

Fig. 2. The block structure of (a) conventional MambaOut block and (b) 

the proposed Redesigned Lightweight MambaOut (RLM) block. 



While convolution is computationally intensive due to its 
high number of multiply-accumulate operations, it is 
inefficient for deployment on the Internet of Medical Things 
(IoMT). Considering that channel-wise feature interactions 
have already occurred in the linear stage, we apply average 
pooling to extract adjacent features within the same channel 
[14]. Inspired by the Inception module [15], the feature map 
is divided into two groups, which undergo 3×3 and 5×5 
average pooling, respectively, to capture receptive fields of 
different resolutions. The approach can be expressed as  

[𝑋1; 𝑋2] = 𝑠𝑝𝑙𝑖𝑡(𝑋′)                        (5) 

𝑌1 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙3×3(𝑋1), 𝑌2 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙5×5(𝑋2)     (6) 

𝑌 =  𝑐𝑎𝑡[𝑌1; 𝑌2]                           (7) 

where 𝑠𝑝𝑙𝑖𝑡(·)  and 𝑐𝑎𝑡(·)  represents splitting and 
concatenation along the channel dimension, respectively and 
𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑘×𝑘  is a two-dimensional average pooling operation 

with a kernel size of 𝑘. 

Finally, a shortcut path is added and the redesigned block 
is shown in Fig. 2(b), which significantly reduces the 
computational burden while maintaining the ability to capture 
multi-scale features. By replacing batch normalization with 
channel scaling and utilizing average pooling to enhance 
feature extraction, the proposed block provides an efficient 
alternative suitable for resource-constrained environments 
such as the IoMT. 

C. Hyperparameter Optimization 

The original MambaOut structure was designed for highly 

complex datasets, leading to overcapacity when applied to 

ECG diagnosis. To make the model more lightweight and 

suitable for this context, key hyperparameters were carefully 

optimized. Average pooling was applied to reduce the DWT-

derived feature maps from (360, 60) to a size of (60, 60), 

effectively decreasing spatial dimensions while preserving 
essential information, thus reducing computational burden. A 

two-stage structure with feature map sizes of  (𝐻/2, 𝑊/2) 

and (𝐻/4, 𝑊/4) was adopted, using only 6 channels in the 

first stage and 12 in the second to maintain a compact 

architecture optimized for memory and computational 

efficiency. 

The modified RLM block incorporates an expansion ratio 

of 2, controlling intermediate feature growth to balance 

parameter efficiency with expressiveness. These 

optimizations result in a model with only 1.8k trainable 
parameters, making it well-suited for real-time ECG 

diagnosis on resource-constrained edge devices. 

III. QUANTIZATION-AWARE FUSION HARDWARE CO-DESIGN 

A. Scaling-Linear Fusion 

To ensure efficient operation on an MCU, a hardware co-
design approach is adopted, with the channel scaling and 
linear layers fused in the proposed model as shown in Fig. 
2(b). This fusion effectively removes redundant operations, 
significantly reducing the number of multiply-accumulate 
(MAC) operations. The derivation of the scaling and linear 
layer fusion is presented below 

𝑌𝑐,ℎ,𝑤 =  𝐿𝑖𝑛𝑒𝑎𝑟(𝑆𝑐𝑎𝑙𝑖𝑛𝑔(𝑋𝑐,ℎ,𝑤))                             

=  ∑ 𝑊𝑐,𝑖 ⋅ (𝑆𝑐,1,1 ⋅ 𝑋𝑐,ℎ,𝑤) + 𝑏𝑐
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=  ∑(𝑊𝑐,𝑖 ⋅ 𝑆𝑐,1,1) ⋅ 𝑋𝑐,ℎ,𝑤 + 𝑏𝑐

𝐶

𝑖=1

 

=  𝐹𝑢𝑠𝑖𝑜𝑛 𝐿𝑖𝑛𝑒𝑎𝑟(𝑋𝑐,ℎ,𝑤)                           (8) 

where 𝑊𝑐,𝑖 represents the weight of the convolution kernel of 

the 𝑐𝑡ℎ  output channel and the 𝑖𝑡ℎ  input channel, 𝑏𝑐   is the 

bias term and 𝑆𝑐,1,1 represents the scaling factor for the 𝑐𝑡ℎ 

channel.  

Such an optimization significantly reduces computational 

complexity during inference, which is particularly 

advantageous for resource-constrained IoMT devices 

requiring efficient computational performance. In addition, 

the co-design approach to fusing the scaling and linear layers 

minimizes memory access by enabling direct processing of 

intermediate feature maps without the need for explicit 

storage or reloading, resulting in improved data access 

efficiency.  

B. Fully Configurable Quantization 

To enhance computational and memory efficiency on 
IoMT devices, we propose a fully configurable quantization 
scheme. As illustrated in Fig. 3(a), during both training and 

 
(a) 

 
(b) 

Fig. 3. (a) The proposed fully configurable quantization scheme flow 

chart. (b) The schematic of configurable shifting operation. 



inference phases, the weights and activation parameters are 
quantized to 8-bit and 16-bit, respectively. 

Focusing first on activation quantization, conventional 
integer quantization often struggles to balance the dynamic 
range of neurons across different layers, resulting in 
significant precision loss for neurons with small ranges. To 
address this, we introduce a configurable shifting operation 
that determines an appropriate fixed-point representation for 
each layer neurons, thereby achieving both optimal range 
coverage and minimized precision loss as shown in Fig. 3(b).  

Consider a layer of neurons represented in INT32 format 
with an initial left shift bit 𝑝, which is used to represent the 
fixed-point location. To facilitate efficient quantization, we 
first convert negative values to positive using two's 
complement representation. Next, we identify the bit position 
𝑚 of the most significant bit (MSB) of the absolute values 
among all neurons. All neurons are shifted to adjust the value 
range accordingly with 

𝑠 = 𝑚 − 15                                   (9) 

If 𝑠 > 0, the neurons are right-shifted by s bits to reduce the 
value range, whereas if 𝑠 < 0, they are left-shifted by ∣ 𝑠 ∣ 
bits to better utilize the available bit range. After the shifting 
operation, the neurons are truncated to 16 bits, with the 
original sign restored based on the previously recorded sign 
bit. The left shift bit 𝑝′ is then updated as 

𝑝′ = 𝑝 − 𝑠                                 (10) 

ensuring the accuracy of the fixed-point representation. The 
final INT16 neurons, along with the updated left shift bit 𝑝′, 
serve as the input to the next layer of the neural network, 
thereby maintaining consistent fixed-point scaling 
throughout subsequent operations. 

For weight quantization, we adopted an approach inspired 
by dynamic quantization [16], which sets an absolute 
maximum boundary based on the values within each layer 
and then rounds them to INT8 levels. Subsequently, a 
configurable shifting operation is applied to each layer to 
optimize the utilization of the available bit range, thereby 
enhancing the efficiency of the quantization process. This 
scheme ensures a more effective balance of quantization error 

across layers, leading to improved model performance and 
stability on resource-constrained IoMT devices. 

IV. SIMULATION RESULTS AND DISCUSSION 

A. Model Training 

The training of the proposed LiMO system was performed 
using an Intel 13600KF CPU alongside an RTX 3060Ti 
graphics card with GDDR6X memory. Quantization-aware 
training (QAT) was employed to mitigate the quantization 
errors that may arise during hardware implementation, as 
well as to validate the effectiveness of the hardware-software 
co-design approach [16]. The QAT ensures that the model 
learns to adapt to the reduced precision during training, 
leading to improved performance in the final MCU 
deployment. The results, presented in Fig. 4, demonstrate the 
LiMO system robustness and efficiency under quantization 
constraints. At epoch 500, weight quantization was applied, 
followed by activation quantization at epoch 700. Despite 
these steps, the system maintained high accuracy and 
minimal loss, highlighting its ability to optimize 
computational efficiency without compromising 
performance. 

B. Hardware Deployment And Power Consumption 

Measurement 

Fig. 5 shows the energy consumption of the inference 
process, with the vertical axis being current and the 
horizontal axis being time. The voltage is kept constant at 3.3 
V. Fig. 6 shows the experimental platform based on the 
NRF52840 development kit and PPK II, on which the 
proposed LiMO system has been successfully deployed. The 
nRF52840 MCU platform integrates 1 MB Flash memory 
and 256 KB RAM. After optimization, the resource 
occupancy rates were significantly reduced: the Flash 
memory consumption reached only 55,716 bytes (5.31% of 
total capacity), while the peak RAM usage measured 10,496 
bytes (4.00% of total capacity). This demonstrates that LiMO 
achieves efficient memory compression while maintaining 
model inference accuracy. 

To evaluate the system energy efficiency characteristics, 
an experimental setup employing the Power Profiler Kit II 
(PPK II, Nordic Semiconductor) was implemented: The PPK 
II received power via a USB interface and delivered a 
stabilized 3.3V output voltage to the target development 
board. Fig. 5 reveals a characteristic square-wave current 

 
Fig. 4. The proposed LiMO system training accuracy and loss curves, 

with weight quantization applied at epoch 500 and activation 

quantization introduced at epoch 700. 

 
Fig. 5. Experimental platform based on NRF52840 Development Kit and 

PPK II and square wave current diagram on laptop 

 



profile observed in the software interface, during LiMO 
activation computations, the operating current surged from a 
static baseline of 1 mA to over 3 mA. This square-wave 
power consumption pattern shows close correlation with the 
temporal characteristics of convolutional layer weight 
loading and matrix multiplication-accumulation operations. 

Further energy consumption analysis was conducted by 
acquiring time-current raw data through the nRF Connect for 
Desktop software (sampling rate: 100 kHz). The exported 
CSV-formatted data underwent numerical integration for 
periodic energy calculation: 

𝐸 = ∫ 𝑉𝑠𝑢𝑝𝑝𝑙𝑦
𝑡1

𝑡0
⋅ 𝐼(𝑡)𝑑𝑡                    (11) 

The supply voltage was set to 𝑉𝑠𝑢𝑝𝑝𝑙𝑦 = 3.3 V, and 

numerical integration was implemented using the trapz 
function in MATLAB. The average energy consumption per 
inference task was determined to be 8.08±0.23 mJ from 100 
independent measurements. These results show that the LiMO 
architecture maintains medical-grade computational accuracy 
while meeting the endurance requirements of wearable ECG 
monitoring devices, which need to perform tens of thousands 
of inference tasks per day, thus providing a scalable solution 
for edge intelligence deployment in IoMT devices. 

The comparative analysis of the models is succinctly 
summarized in Table. I. It becomes evident that the proposed 
LiMO system, refined through a software-hardware co-
design approach, exhibits a clear advantage in terms of 
reduced resource consumption while incurring minimal loss 
in accuracy. This underscores the efficacy of the proposed 
model in balancing computational efficiency with 
performance integrity.  

Future work will focus on exploring advanced 
optimization techniques and developing custom hardware 
accelerators to further enhance the performance of the LiMO 
system. Specifically, we plan to integrate additional 
biosignals such as photoplethysmography (PPG) to improve 
diagnostic capabilities and provide a more comprehensive 
analysis. Moreover, we will investigate personalization 
techniques to tailor the health monitoring system to 

individual users, thus enhancing accuracy and reliability. 
Attention will also be given to biometric security, ensuring 
that the system is not only efficient but also secure against 
unauthorized access. These efforts aim to push the boundaries 
of current wearable healthcare technologies, paving the way 
for next-generation wearable health monitoring systems that 
are capable of providing more sophisticated, accurate, and 
instantaneous diagnostics directly from the edge IoMT. 

V. CONLUSION 

This paper has presented LiMO, a lightweight MambaOut 
architecture designed to operate entirely on an MCU for real-
time ECG diagnosis in IoMT applications. Through the 
integration of a fully configurable quantization strategy, scale-
linear layer fusion, and a hardware-software co-design 
approach, LiMO demonstrates that advanced deep learning 
methods can be adapted to severely resource-limited 
environments. The system achieves 98.75% classification 
accuracy on the MIT-BIH dataset with just 1.8k parameters, 
occupying only 54.4 KB of Flash and 10.25 KB of RAM while 
consuming 8.08 mJ per heartbeat classification at 3.3 V. 
Experimental results show that LiMO preserves high-
precision computation while satisfying the hardware and 
battery constraints of wearable medical devices, offering a 
practical architecture for real-time IoMT applications. 
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