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Abstract—Deep learning frameworks such as Mamba have
significantly improved inference speed and computational
efficiency. However, deploying them on resource-constrained
edge devices on the Internet of Medical Things (IoMT) poses
challenges due to the demands for real-time processing, secure
data handling, and ultra-low power consumption. To address
these constraints, this paper introduces LiMO, a lightweight
MambaOut architecture that runs entirely on an
microcontroller unit (MCU) for real-time electrocardiogram
(ECG) diagnosis. By integrating the proposed fully configurable
guantization, scale-linear layer fusion, and a hardware-software
co-design approach, LiMO substantially reduces computational
loading while maintaining medical-grade accuracy. Notably, the
entire model consists of just 1.8k parameters. When deployed on
the nRF52840 MCU, LiMO occupies only 54.4 KB of Flash and
10.25 KB of RAM, achieves 98.75% accuracy on the MIT-BIH
dataset, and consumes as little as 8.08 mJ per heartbeat
classification at 3.3 V. These results demonstrate that LiMO
successfully bridges the gap between state-of-the-art deep
learning methodologies and the stringent requirements of real-
time ECG diagnosis in MCU-based l1oMT environments,
offering a practical and energy-efficient solution for next-
generation medical monitoring.

Keywords—ECG classification, Software-hardware Co-design,
Discrete Wavelet Transform, Poolformer

I. INTRODUCTION

In recent years, the advanced deep learning frameworks
[1], like the newly proposed Mamba [2], has significantly
advanced artificial intelligence, enhancing inference speed
and computational efficiency, and achieving superior
performance across diverse fields such as natural language
processing and time-series analysis [3-5]. However,
deploying such architectures on the Internet of Medical
Things (IoMT) domain presents significant challenges. The
conventional Mamba framework requires substantial
parameters and computational power, making it unsuitable for
resource-constrained edge devices typically used in healthcare
environments. These devices require real-time data processing,
patient privacy, data security, and ultra-low power
consumption, particularly for tasks like detecting and
diagnosing cardiovascular diseases (CVDs) [6-7]. Therefore,
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the significant advantages of the Mamba architecture make its
adaptation crucial for meeting the stringent demands of
medical edge computing, highlighting the need for specialized,
efficient solutions tailored for healthcare applications.

In recent years, many studies have focused on deploying
advanced Al models on resource-constrained edge devices,
particularly in the healthcare domain, to enable real-time and
secure IoMT [8-10]. Significant progress has been made in
deploying Mamba algorithms on sophisticated yet powerful
standalone devices; however, the high resource consumption
involved has rendered them impractical for edge devices in
medical applications, where computational and energy
resources are limited [8]. Additionally, existing approaches
for ECG diagnosis on edge devices often face challenges in
achieving a balance between model accuracy, computational
performance, and parameter efficiency, leading to
compromises that hinder effective real-world deployment [9].
Moreover, while quantization techniques have been employed
to reduce model size and complexity, current methods fail to
optimize the trade-off between precision and bit-width for
each individual layer [10]. This limitation prevents achieving
the optimal compromise between accuracy preservation and
resource efficiency, which is critical for practical edge
computing  applications.  Although MambaOut has
demonstrated that the Mamba architecture can be effectively
simplified for vision classification tasks [11], while the
nonlinear operations involved still pose a significant challenge
for practical biomedical hardware implementation. These
challenges emphasize the need for an approach that integrates
amore efficient adaptation of the Mamba framework on MCU,
achieves balanced ECG diagnostic performance, and employs
adaptive layer-wise configurable quantization strategies, thus
making it viable for real-time healthcare monitoring in
constrained environments.

In this work, we present a lightweight MambaOut (LiMO)
system that incorporates novel optimization techniques to
enhance computational efficiency while preserving model
accuracy. To achieve an optimal balance between precision
and computational load, we introduce a layer-wise
configurable quantization approach, applied to both weights
and activations during forward computations. Following a
hardware-software co-design methodology, we ensure
seamless integration between algorithmic innovations and
hardware constraints. The LiMO system, occupying only
55,716 bytes of FLASH (about 54.4 KB) and 10,496 bytes of
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Fig. 1. The architecture of the proposed LiMO model. AAMI is the ECG
classification standards developed by the Advancement of Medical
Instrumentation.

RAM (about 10.25 KB), was successfully deployed on an
nNRF52840 MCU (Nordic Semiconductor ASA). Utilizing the
MIT-BIH dataset for evaluation, the implementation achieved
an impressive accuracy of 98.75%. The key contributions of
this study are: (1) balancing model accuracy and efficiency by
significantly reducing complexity while maintaining medical-
grade prediction accuracy; (2) overcoming MCU hardware
limitations, including memory, computational capacity, and
power consumption, to enable efficient deep learning
deployment; and (3) demonstrating an end-to-end MCU
implementation, bridging theoretical advancements with
practical applications.

The rest of the paper is organized as follows. Section Il
provides a comprehensive overview of the proposed LiMO
system for edge electrocardiogram classification system.
Section |1l presents the fully configurable quantization
strategy to enhance computational efficiency and model
compactness. Section IV presents the implementation results
on MCU while Section V concludes the paper.

Il. LiIMO ECG SYSTEM SOFTWARE CO-DESIGN

A. LIMO System Overview

The structure of the proposed LiMO system for the end-
to-end edge electrocardiogram classification system is
depicted in Fig. 1. The single-channel ECG signal is acquired
using suction cup electrodes and processed by the nRF52840
MCU. Upon acquisition, the raw signal is first processed with
a band-pass filter (BPF, 0.5-100 Hz), followed by a moving
average filter and normalization to maintain the amplitude
within a standard range, thus mitigating variability arising
from inconsistent electrode contact. These preprocessing steps
result in a smoother and more distinct ECG signal, facilitating

TR

1V

Linear

&

|_com | ©
\  umear / \  Linear / [3saver | [sxsavep | (o)
\ e/ —

|
(a) )

Fig. 2. The block structure of (a) conventional MambaOut block and (b)
the proposed Redesigned Lightweight MambaOut (RLM) block.

the identification of key waveform components, including the
PR interval, QRS complex, and T wave. Once the waveform
is preprocessed, it is segmented into individual samples based
on Q-peak detection. Subsequently, each segment undergoes
discrete wavelet transform (DWT) for multiresolution
analysis [12], generating a wavelet coefficient spectrogram for
detailed feature extraction with

DWT(j, k) = an[n] p[n — 2k]
B=zky2

= 5[] cos @0 ()

where, f[n] represents the discrete signal at sample n, j and
k are the scale and translation of the transform, respectively,
and ¢ is the wavelet function. Finally, the LiMO system is
executed on the MCU for real-time diagnosis, providing the
predicted classification outcomes.

B. Lightweight MambaOut Block

The conventional block in MambaOut is shown in Fig. 2(a)
which is formulated as

X' = Norm(X) 2
Y = (Conv(X'W,) © o(X'W,))W; + X (3)

where Norm(-) represents normalization, Conv(-) refers to
the module to conduct convolution, © is the elementwise
multiplication and ¢ is the active function.

To enhance computational and memory efficiency, the
block has been redesigned as the Redesigned Lightweight
MambaOut (RLM) Block in this work. Firstly, batch
normalization, which introduces inference complexity, has
been demonstrated to be replaceable in lightweight models
[13]. Therefore, it has been replaced by channel scaling,
demonstrated as

X' = Linear(Scaling (X)) (4)

where the input tensor is X of shape (C, H, W), Scaling(:) is
the channel scaling operation with factor of shape (C,1,1)
and Linear(+) is the linear multiplication with bias.
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Fig. 3. (a) The proposed fully configurable quantization scheme flow
chart. (b) The schematic of configurable shifting operation.

While convolution is computationally intensive due to its
high number of multiply-accumulate operations, it is
inefficient for deployment on the Internet of Medical Things
(IoMT). Considering that channel-wise feature interactions
have already occurred in the linear stage, we apply average
pooling to extract adjacent features within the same channel
[14]. Inspired by the Inception module [15], the feature map
is divided into two groups, which undergo 3>3 and 5>5
average pooling, respectively, to capture receptive fields of
different resolutions. The approach can be expressed as

[X1; X] = split(X") ©)
Y, = AvgPools,;(X,),Y, = AvgPools,s(X,)  (6)
Y = cat[¥;; 2] (M

where split() and cat(-) represents splitting and
concatenation along the channel dimension, respectively and
AvgPool,, isatwo-dimensional average pooling operation
with a kernel size of k.

Finally, a shortcut path is added and the redesigned block
is shown in Fig. 2(b), which significantly reduces the
computational burden while maintaining the ability to capture
multi-scale features. By replacing batch normalization with
channel scaling and utilizing average pooling to enhance
feature extraction, the proposed block provides an efficient
alternative suitable for resource-constrained environments
such as the 1oMT.

C. Hyperparameter Optimization

The original MambaOut structure was designed for highly
complex datasets, leading to overcapacity when applied to
ECG diagnosis. To make the model more lightweight and

suitable for this context, key hyperparameters were carefully
optimized. Average pooling was applied to reduce the DWT-
derived feature maps from (360, 60) to a size of (60, 60),
effectively decreasing spatial dimensions while preserving
essential information, thus reducing computational burden. A
two-stage structure with feature map sizes of (H/2,W/2)
and (H/4,W /4) was adopted, using only 6 channels in the
first stage and 12 in the second to maintain a compact
architecture optimized for memory and computational
efficiency.

The modified RLM block incorporates an expansion ratio
of 2, controlling intermediate feature growth to balance
parameter  efficiency  with  expressiveness.  These
optimizations result in a model with only 1.8k trainable
parameters, making it well-suited for real-time ECG
diagnosis on resource-constrained edge devices.

I1l. QUANTIZATION-AWARE FUSION HARDWARE CO-DESIGN

A. Scaling-Linear Fusion

To ensure efficient operation on an MCU, a hardware co-
design approach is adopted, with the channel scaling and
linear layers fused in the proposed model as shown in Fig.
2(b). This fusion effectively removes redundant operations,
significantly reducing the number of multiply-accumulate
(MAC) operations. The derivation of the scaling and linear
layer fusion is presented below

Yonw = Linear(Scaling(Xc‘h‘w))

C
= Z Wc,i : (Sc,l,l ' Xc,h,w) + bc
i=1

C
Z(Wc,i : Sc,l,l) ' Xc,h,w + bc

i=1
Fusion Linear(X, ) (8)

where W ; represents the weight of the convolution kernel of
the c* output channel and the i*" input channel, b, is the
bias term and S, , , represents the scaling factor for the c"
channel.

Such an optimization significantly reduces computational
complexity during inference, which is particularly
advantageous for resource-constrained 1oMT devices
requiring efficient computational performance. In addition,
the co-design approach to fusing the scaling and linear layers
minimizes memory access by enabling direct processing of
intermediate feature maps without the need for explicit
storage or reloading, resulting in improved data access
efficiency.

B. Fully Configurable Quantization

To enhance computational and memory efficiency on
IoMT devices, we propose a fully configurable quantization
scheme. As illustrated in Fig. 3(a), during both training and
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Fig. 4. The proposed LiMO system training accuracy and loss curves,
with weight quantization applied at epoch 500 and activation
quantization introduced at epoch 700.

inference phases, the weights and activation parameters are
quantized to 8-bit and 16-bit, respectively.

Focusing first on activation quantization, conventional
integer quantization often struggles to balance the dynamic
range of neurons across different layers, resulting in
significant precision loss for neurons with small ranges. To
address this, we introduce a configurable shifting operation
that determines an appropriate fixed-point representation for
each layer neurons, thereby achieving both optimal range
coverage and minimized precision loss as shown in Fig. 3(b).

Consider a layer of neurons represented in INT32 format
with an initial left shift bit p, which is used to represent the
fixed-point location. To facilitate efficient quantization, we
first convert negative values to positive using two's
complement representation. Next, we identify the bit position
m of the most significant bit (MSB) of the absolute values
among all neurons. All neurons are shifted to adjust the value
range accordingly with

s=m-—15 9)

If s > 0, the neurons are right-shifted by s bits to reduce the
value range, whereas if s < 0, they are left-shifted by | s |
bits to better utilize the available bit range. After the shifting
operation, the neurons are truncated to 16 bits, with the
original sign restored based on the previously recorded sign
bit. The left shift bit p’ is then updated as

p=p-—s (10)

ensuring the accuracy of the fixed-point representation. The
final INT16 neurons, along with the updated left shift bit p’,
serve as the input to the next layer of the neural network,
thereby maintaining consistent  fixed-point  scaling
throughout subsequent operations.

For weight quantization, we adopted an approach inspired
by dynamic quantization [16], which sets an absolute
maximum boundary based on the values within each layer
and then rounds them to INT8 levels. Subsequently, a
configurable shifting operation is applied to each layer to
optimize the utilization of the available bit range, thereby
enhancing the efficiency of the quantization process. This
scheme ensures a more effective balance of quantization error
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Fig. 5. Experimental platform based on NRF52840 Development Kit and
PPK II and square wave current diagram on laptop

across layers, leading to improved model performance and
stability on resource-constrained I0MT devices.

IV. SIMULATION RESULTS AND DISCUSSION

A. Model Training

The training of the proposed LiMO system was performed
using an Intel 13600KF CPU alongside an RTX 3060Ti
graphics card with GDDR6X memory. Quantization-aware
training (QAT) was employed to mitigate the quantization
errors that may arise during hardware implementation, as
well as to validate the effectiveness of the hardware-software
co-design approach [16]. The QAT ensures that the model
learns to adapt to the reduced precision during training,
leading to improved performance in the final MCU
deployment. The results, presented in Fig. 4, demonstrate the
LiMO system robustness and efficiency under quantization
constraints. At epoch 500, weight quantization was applied,
followed by activation quantization at epoch 700. Despite
these steps, the system maintained high accuracy and
minimal loss, highlighting its ability to optimize
computational efficiency without compromising
performance.

B. Hardware Deployment And Power Consumption
Measurement

Fig. 5 shows the energy consumption of the inference
process, with the vertical axis being current and the
horizontal axis being time. The voltage is kept constant at 3.3
V. Fig. 6 shows the experimental platform based on the
NRF52840 development kit and PPK II, on which the
proposed LiMO system has been successfully deployed. The
nRF52840 MCU platform integrates 1 MB Flash memory
and 256 KB RAM. After optimization, the resource
occupancy rates were significantly reduced: the Flash
memory consumption reached only 55,716 bytes (5.31% of
total capacity), while the peak RAM usage measured 10,496
bytes (4.00% of total capacity). This demonstrates that LiMO
achieves efficient memory compression while maintaining
model inference accuracy.

To evaluate the system energy efficiency characteristics,
an experimental setup employing the Power Profiler Kit Il
(PPK 11, Nordic Semiconductor) was implemented: The PPK
Il received power via a USB interface and delivered a
stabilized 3.3V output voltage to the target development
board. Fig. 5 reveals a characteristic square-wave current



Fig. 6. Experimental platform based on NRF52840 Development Kit and
PPK Il and square wave current diagram on laptop

profile observed in the software interface, during LiMO
activation computations, the operating current surged from a
static baseline of 1 mA to over 3 mA. This square-wave
power consumption pattern shows close correlation with the
temporal characteristics of convolutional layer weight
loading and matrix multiplication-accumulation operations.

Further energy consumption analysis was conducted by
acquiring time-current raw data through the nRF Connect for
Desktop software (sampling rate: 100 kHz). The exported
CSV-formatted data underwent numerical integration for
periodic energy calculation:

t
E= [, Vsuppy - 1(D)dt (12)

The supply voltage was set t0 Vg, = 3.3 V, and
numerical integration was implemented using the trapz
function in MATLAB. The average energy consumption per
inference task was determined to be 8.0840.23 mJ from 100
independent measurements. These results show that the LIMO
architecture maintains medical-grade computational accuracy
while meeting the endurance requirements of wearable ECG
monitoring devices, which need to perform tens of thousands
of inference tasks per day, thus providing a scalable solution
for edge intelligence deployment in IoMT devices.

The comparative analysis of the models is succinctly
summarized in Table. I. It becomes evident that the proposed
LiMO system, refined through a software-hardware co-
design approach, exhibits a clear advantage in terms of
reduced resource consumption while incurring minimal loss
in accuracy. This underscores the efficacy of the proposed
model in balancing computational efficiency with
performance integrity.

Future work will focus on exploring advanced
optimization techniques and developing custom hardware
accelerators to further enhance the performance of the LiMO
system. Specifically, we plan to integrate additional
biosignals such as photoplethysmography (PPG) to improve
diagnostic capabilities and provide a more comprehensive
analysis. Moreover, we will investigate personalization
techniques to tailor the health monitoring system to

Table. I. PERFORMANCE COMPARISON WITH OTHER APPROACHES

Method [17] [18] [19] Proposed
Feature CWT Raw ECG Raw ECG CWT
. PCA& CNN& Lightweight
Algorithm RNN ULECGNet MLP MambaOut
Test
7.7 . 7. 7
Accuracy(%) 9 98.33 97.3 98.75
No.of 46k 8.2k 198k 1.8k
Parameters
Quantization N.R N.R N.R 16b/8b
Platform N.R MSP432 MSP432 NRF52840
consumption - o 3.1 21.06 8.08
(mJrs)

N.R.: Not reported

individual users, thus enhancing accuracy and reliability.
Attention will also be given to biometric security, ensuring
that the system is not only efficient but also secure against
unauthorized access. These efforts aim to push the boundaries
of current wearable healthcare technologies, paving the way
for next-generation wearable health monitoring systems that
are capable of providing more sophisticated, accurate, and
instantaneous diagnostics directly from the edge loMT.

V. CONLUSION

This paper has presented LiMO, a lightweight MambaOut
architecture designed to operate entirely on an MCU for real-
time ECG diagnosis in IoMT applications. Through the
integration of a fully configurable quantization strategy, scale-
linear layer fusion, and a hardware-software co-design
approach, LiMO demonstrates that advanced deep learning
methods can be adapted to severely resource-limited
environments. The system achieves 98.75% classification
accuracy on the MIT-BIH dataset with just 1.8k parameters,
occupying only 54.4 KB of Flash and 10.25 KB of RAM while
consuming 8.08 mJ per heartbeat classification at 3.3 V.
Experimental results show that LiMO preserves high-
precision computation while satisfying the hardware and
battery constraints of wearable medical devices, offering a
practical architecture for real-time loMT applications.
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